BMC Sports Science, Medicine and Rehabilitation (Sep 2023)
Motor control differs for increasing and decreasing force production during ankle Isometric exercises in children
Abstract
Abstract Background Performance of the central nervous system (CNS) in increased and decreasing muscle force around the ankle joint is essential for upright tasks of daily living. Previous studies have shown altered CNS control when they decrease force compared with when they increase force in young and older adults. But whether such alteration exists during childhood with incomplete maturation of CNS systems remain unclear. Therefore, this study aimed to evaluate the disparities in intramuscular EMG-EMG coherence, which serve as indicators of corticospinal drive to muscles during ankle isometric increasing and decreasing force generation in children. Methods We measured intramuscular EMG-EMG coherence activity of the tibialis anterior (TA) and the associated ability to perform isometric efforts at the ankle in 12 typically developing children (mean ± SD age = 5.91±1.37 years) and 12 healthy young adults (mean ± SD age = 23.16±1.52 years). The participants maintained isometric contractions at 20% of their maximal voluntary contractions (MVC) during ankle dorsiflexion to match a triangle trajectory for 7 s, including ramping up in 3.5 s (increasing force phase) and then linearly ramping down to rest in 3.5 s (decreasing force phase). The variability of force control was characterized by the coefficient of variance (CoV) of force output. Intramuscular EMG-EMG coherence from TA in two frequency bands, the beta band (15–30 Hz) and gamma band (30–45) that could reflect the corticospinal drive, were calculated for the comparison. A repeated measures ANOVA with the within-subjects factor of force generation phase (increasing force vs. decreasing force)x between-subjects factor of the group (children and young adults) was used for statistical analysis. Results Regarding the within-subjects difference, our results exhibited significantly higher CoV of force (p < 0.01) and lower EMG-EMG coherence of TA when they decrease force compared with when they increase force in both children and young adult groups. Regarding the between-subjects difference, the CoV of force was significantly higher (p < 0.01) in children compared to young adults, while the EMG-EMG coherence in children showed a significantly lower (p < 0.01) coherence compared with young adults. Furthermore, the EMG-EMG coherence measures were negatively correlated with the CoV of force. Conclusions The findings suggest that the age-related development would increase the corticospinal drive to TA muscle to deal with ankle isometric dorsiflexion during childhood, which could be also modulated with the force production phases, including increasing and decreasing force.
Keywords