Applied Sciences (Dec 2021)
A Cluster-Based Optimal Computation Offloading Decision Mechanism Using RL in the IIoT Field
Abstract
In the Industrial Internet of Things (IIoT), various tasks are created dynamically because of the small quantity batch production. Hence, it is difficult to execute tasks only with devices that have limited battery lives and computation capabilities. To solve this problem, we adopted the mobile edge computing (MEC) paradigm. However, if there are numerous tasks to be processed on the MEC server (MECS), it may not be suitable to deal with all tasks in the server within a delay constraint owing to the limited computational capability and high network overhead. Therefore, among cooperative computing techniques, we focus on task offloading to nearby devices using device-to-device (D2D) communication. Consequently, we propose a method that determines the optimal offloading strategy in an MEC environment with D2D communication. We aim to minimize the energy consumption of the devices and task execution delay under certain delay constraints. To solve this problem, we adopt a Q-learning algorithm that is part of reinforcement learning (RL). However, if one learning agent determines whether to offload tasks from all devices, the computing complexity of that agent increases tremendously. Thus, we cluster the nearby devices that comprise the job shop, where each cluster’s head determines the optimal offloading strategy for the tasks that occur within its cluster. Simulation results show that the proposed algorithm outperforms the compared methods in terms of device energy consumption, task completion rate, task blocking rate, and throughput.
Keywords