Viruses (Oct 2022)

Ampliseq for Illumina Technology Enables Detailed Molecular Epidemiology of Rabies Lyssaviruses from Infected Formalin-Fixed Paraffin-Embedded Tissues

  • Susan Angela Nadin-Davis,
  • Allison Hartke,
  • Mingsong Kang

DOI
https://doi.org/10.3390/v14102241
Journal volume & issue
Vol. 14, no. 10
p. 2241

Abstract

Read online

Whole genome sequencing of rabies lyssaviruses (RABVs) has enabled the generation of highly detailed phylogenies that reveal viral transmission patterns of disease in reservoir species. Such information is highly important for informing best practices with respect to wildlife rabies control. However, specimens available only as formalin fixed paraffin embedded (FFPE) samples have been recalcitrant to such analyses. Due to the damage inflicted by tissue processing, only relatively short amplicons can be generated by standard RT-PCR methods, making the generation of full-length genome sequences very tedious. While highly parallel shotgun sequencing of total RNA can potentially overcome these challenges, the low percentage of reads representative of the virus may be limiting. Ampliseq technology enables massively multiplex amplification of nucleic acids to produce large numbers of short PCR products. Such a strategy has been applied to the sequencing of entire viral genomes but its use for rabies virus analysis has not been reported previously. This study describes the generation of an Ampliseq for Illumina primer panel, which was designed based on the global sequence diversity of rabies viruses, and which enables efficient viral genome amplification and sequencing of rabies-positive FFPE samples. The subsequent use of such data for detailed phylogenetic analysis of the virus is demonstrated.

Keywords