Nature Communications (Dec 2018)

Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy

  • Jens B. Stephansen,
  • Alexander N. Olesen,
  • Mads Olsen,
  • Aditya Ambati,
  • Eileen B. Leary,
  • Hyatt E. Moore,
  • Oscar Carrillo,
  • Ling Lin,
  • Fang Han,
  • Han Yan,
  • Yun L. Sun,
  • Yves Dauvilliers,
  • Sabine Scholz,
  • Lucie Barateau,
  • Birgit Hogl,
  • Ambra Stefani,
  • Seung Chul Hong,
  • Tae Won Kim,
  • Fabio Pizza,
  • Giuseppe Plazzi,
  • Stefano Vandi,
  • Elena Antelmi,
  • Dimitri Perrin,
  • Samuel T. Kuna,
  • Paula K. Schweitzer,
  • Clete Kushida,
  • Paul E. Peppard,
  • Helge B. D. Sorensen,
  • Poul Jennum,
  • Emmanuel Mignot

DOI
https://doi.org/10.1038/s41467-018-07229-3
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 15

Abstract

Read online

The diagnosis of sleep disorders such as narcolepsy and insomnia currently requires experts to interpret sleep recordings (polysomnography). Here, the authors introduce a neural network analysis method for polysomnography that could reduce time spent in sleep clinics and automate narcolepsy diagnosis.