Jurnal Elkomika (Jan 2019)

Deteksi Sinyal : Overview Model Parametrik menggunakan Kriteria Neyman-Pearson

  • FIKY YOSEF SURATMAN,
  • ALOYSIUS ADYA PRAMUDITA,
  • DHARU ARSENO

DOI
https://doi.org/10.26760/elkomika.v7i1.14
Journal volume & issue
Vol. 7, no. 1

Abstract

Read online

ABSTRAK Deteksi sinyal banyak diimplementasikan dalam sistem pengolahan sinyal yang sangat kompleks. Sebagai contoh digunakan pada sub sistem pengolahan sinyal radar pengintai yang berfungsi untuk deteksi dan pelacakan target. Salah satu implementasi terbaru dari deteksi sinyal adalah untuk fungsi spectrum sensing pada Cognitive Radio. Deteksi sinyal dapat didefinisikan sebagai binary hypothesis testing, yaitu memutuskan satu dari dua keadaan: hanya derau atau tidak ada sinyal (null hypothesis), dan ada sinyal (alternative hypothesis). Teori deteksi sinyal merupakan bidang yang cukup luas, sehingga paper ini fokus pada pendekatan parametrik dengan Teorema Neyman-Pearson. Kedua hypothesis dimodelkan dengan variabel acak dengan distribusi rapat kemungkinan yang sama tetapi mempunyai parameter yang berbeda. Ditunjukkan penurunan test statistic untuk dua skenario, yaitu distribusi dengan diketahui sebagian dan diketahui penuh. Bagian simulasi menunjukkan kinerja detektor sinyal secara analitis mempunyai hasil yang serupa dengan simulasi Monte Carlo. Kata kunci: deteksi sinyal, Neyman-Pearson, hypothesis testing, spectrum sensing, radar. ABSTRACT Signal detection has been used in many sophisticated signal processing systems, such as for signal processing in surveillance radar which is to detect and to track a radar target. Recently, signal detection is widely used for spectrum sensing in Cognitive Radio. Signal detection is a binary hypothesis testing problem which is to choose one out of two conditions, i.e., noise only or signal absence (null hypothesis), and signal presence (alternative hypothesis). Since signal detection theory is a wide area, this paper only focuses on parametric approach using Neyman-Pearson theorem. The two hypotheses are modeled by random variables having the same distribution but different parameters. The derivations of test statistics (detectors) are shown for two scenarios, i.e., partially known and perfectly known distributions. Analytical results and Monte Carlo simulations of the derived detectors show similar performances. Keywords: signal detection, Neyman-Pearson, hypothesis testing, spectrum sensing, radar.

Keywords