Frontiers in Ecology and Evolution (Jul 2021)
Domestic Cat Abundance and Activity Across a Residential Land Use Gradient
Abstract
Free-ranging domestic cats are a detriment to wildlife and humans by preying on native species and transmitting disease. As a result, removing free-ranging cats from the landscape has become a conservation and public health priority. Estimating cat population size with an unbiased sampling design, however, especially in human-dominated areas, is logistically challenging and rarely done. The lack of robust cat population sampling limits our understanding of where cats pose risks, which is important for evaluating management strategies, such as trap-remove or trap-neuter-return. We hypothesized that cat abundance and activity both depend on human land use and demographics. Using a network of sites participating in a community science program, we conducted transect and camera trap surveys to test predictions of cat population abundance and activity across a gradient of residential land use intensity. Both sampling methods determined that cat abundance was greatest in areas with intermediate human population density and lower educational attainment. Transect data also provided evidence that cat abundance was greatest at intermediate levels of impervious surface cover (e.g., road and buildings), while data from camera traps also showed that cat abundance was positively associated with household income. Using counts of cats observed on cameras, we found that the timing of cat activity varied depending on the degree of urban intensity. Cats were more strictly nocturnal in medium and high intensity residential land-use areas, possibly because a greater proportion of these cats are unowned or because they avoid human activity. These results suggest that transect surveys conducted during the day may undercount cats in urban environments where unowned free-ranging cats predominate. Taken together, our results highlight the importance of incorporating human demographics, land use patterns, and urban context in estimating the abundance of free-ranging cats to better inform management decisions and improve conservation outcomes.
Keywords