Natural Gas Industry B (Jun 2022)

Surrogate-assisted hydraulic fracture optimization workflow with applications for shale gas reservoir development: a comparative study of machine learning models

  • Cong Xiao,
  • Shicheng Zhang,
  • Xinfang Ma,
  • Tong Zhou,
  • Xuechen Li

Journal volume & issue
Vol. 9, no. 3
pp. 219 – 231

Abstract

Read online

Unconventional reservoirs have become the main alternative for increasing oil and gas reserves around the world. Owing to their ultralow permeability properties and special pore structure, hydraulic fracturing technology is necessary to realize the efficient development and economic management of unconventional resources. To maximize the production capacity of wells, several fracture parameters, including fracture number, length, width, conductivity, and spacing, need to be optimized effectively. The optimization of hydraulic fracture parameters in shale gas reservoirs generally demands intensive computations owing to the necessity of numerous physicalmodel simulations. This study proposes a machine learning (ML)–assisted global optimization framework to rapidly obtain optimal fracture parameters. We employed three supervised ML models, including the radialbasis function, K-nearest neighbor, and multilayer perceptron, to emulate the relationship between fracture parameters and shale gas productivity for multistage fractured horizontal wells. Firstly, several forward shale gas simulations with embedded discrete fracture models generate training samples. Then, the samples are divided into training and testing samples to train these ML models and optimize network hyper parameters, respectively. Finally, the trained ML models are combined with an intelligent differential evolution algorithm to optimize the fracture parameters. This novel method has been applied to a naturally fractured reservoir model based on the real-field Barnett shale formation. The obtained results are compared with those of conventional optimizations with high-fidelity models. The results confirm the superiority of the proposed method owing to its very low computational cost. The use of ML modeling technology and an intelligent optimization algorithm could greatly contribute to simulation optimization and design, prompting progress in the intelligent development of unconventional oil and gas reservoirs in China.

Keywords