智能科学与技术学报
(Dec 2020)
基于深度强化学习算法的自主式水下航行器深度控制
Affiliations
- 王日中
- 西北工业大学航海学院
- 李慧平
- 西北工业大学航海学院
- 崔迪
- 西北工业大学航海学院
- 徐德民
- 西北工业大学航海学院
- Journal volume & issue
-
Vol. 2,
no. 4
pp.
354
– 360
Abstract
Read online
研究了基于深度强化学习算法的自主式水下航行器(AUV)深度控制问题。区别于传统的控制算法,深度强化学习方法让航行器自主学习控制律,避免人工建立精确模型和设计控制律。采用深度确定性策略梯度方法设计了actor与critic两种神经网络。actor神经网络给出控制策略,critic神经网络用于评估该策略,AUV的深度控制可以通过训练这两个神经网络实现。在OpenAI Gym平台上仿真验证了算法的有效性。
Keywords
WeChat QR code