Sensors (May 2024)

Cleaned Meta Pseudo Labels-Based Pet Behavior Recognition Using Time-Series Sensor Data

  • Junhyeok Go,
  • Nammee Moon

DOI
https://doi.org/10.3390/s24113391
Journal volume & issue
Vol. 24, no. 11
p. 3391

Abstract

Read online

With the increasing number of households owning pets, the importance of sensor data for recognizing pet behavior has grown significantly. However, challenges arise due to the costs and reliability issues associated with data collection. This paper proposes a method for classifying pet behavior using cleaned meta pseudo labels to overcome these issues. The data for this study were collected using wearable devices equipped with accelerometers, gyroscopes, and magnetometers, and pet behaviors were classified into five categories. Utilizing this data, we analyzed the impact of the quantity of labeled data on accuracy and further enhanced the learning process by integrating an additional Distance Loss. This method effectively improves the learning process by removing noise from unlabeled data. Experimental results demonstrated that while the conventional supervised learning method achieved an accuracy of 82.9%, the existing meta pseudo labels method showed an accuracy of 86.2%, and the cleaned meta pseudo labels method proposed in this study surpassed these with an accuracy of 88.3%. These results hold significant implications for the development of pet monitoring systems, and the approach of this paper provides an effective solution for recognizing and classifying pet behavior in environments with insufficient labels.

Keywords