Remote Sensing (Mar 2022)
Basalt Chronology of the Orientale Basin Based on CE-2 CCD Imaging and Implications for Lunar Basin Volcanism
Abstract
The specific duration between the impact event and subsequent volcanic flows is highly variable based on previous works. The method of crater size-frequency distribution (CSFD) has been previously used to date the basalt in Orientale Basin, which yielded inconsistent resultant Absolute Model Age (AMA) ranges. The inconsistency may be attributed to the choice of counting area and identified superposed craters. In this study, we integrated the Chang’E-2 (CE-2) imaging data (7 m/pix) and the IIM and 20 m CE-2 DTMS data, re-divided Mare Orientale, and re-estimated the age of the basalts there. The ages revealed that (1) the central basalts had multiphase eruptions, beginning at 3.77 Ga (30 My after the impact event) with the longest duration of 1.51 Gy; (2) the edge basalts have a similar features as the central basalts, beginning at 3.75–3.50 Ga (50–300 My after the impact) with the longest duration of 0.67 Gy. Compared with the basalts along the basinal margin, the central basalts have higher Ti but lower Mg# contents, consistent with the basaltic magma fractionation trend. Spatial distribution characteristics indicate that the basalt eruption occurred in the impact direction upstream and in the center, but almost absent in the impact direction downstream. Accordingly, we speculate that the longevity of the lunar mare basaltic volcanism was affected by gravity changes, material balance, and other post-impact processes.
Keywords