Remote Sensing (Sep 2024)

MEFSR-GAN: A Multi-Exposure Feedback and Super-Resolution Multitask Network via Generative Adversarial Networks

  • Sibo Yu,
  • Kun Wu,
  • Guang Zhang,
  • Wanhong Yan,
  • Xiaodong Wang,
  • Chen Tao

DOI
https://doi.org/10.3390/rs16183501
Journal volume & issue
Vol. 16, no. 18
p. 3501

Abstract

Read online

In applications such as satellite remote sensing and aerial photography, imaging equipment must capture brightness information of different ground scenes within a restricted dynamic range. Due to camera sensor limitations, captured images can represent only a portion of such information, which results in lower resolution and lower dynamic range compared with real scenes. Image super resolution (SR) and multiple-exposure image fusion (MEF) are commonly employed technologies to address these issues. Nonetheless, these two problems are often researched in separate directions. In this paper, we propose MEFSR-GAN: an end-to-end framework based on generative adversarial networks that simultaneously combines super-resolution and multiple-exposure fusion. MEFSR-GAN includes a generator and two discriminators. The generator network consists of two parallel sub-networks for under-exposure and over-exposure, each containing a feature extraction block (FEB), a super-resolution block (SRB), and several multiple-exposure feedback blocks (MEFBs). It processes low-resolution under- and over-exposed images to produce high-resolution high dynamic range (HDR) images. These images are evaluated by two discriminator networks, driving the generator to generate realistic high-resolution HDR outputs through multi-goal training. Extensive qualitative and quantitative experiments were conducted on the SICE dataset, yielding a PSNR of 24.821 and an SSIM of 0.896 for 2× upscaling. These results demonstrate that MEFSR-GAN outperforms existing methods in terms of both visual effects and objective evaluation metrics, thereby establishing itself as a state-of-the-art technology.

Keywords