Nature Communications (Nov 2023)

Simultaneous and independent topological control of identical microparticles in non-periodic energy landscapes

  • Nico C. X. Stuhlmüller,
  • Farzaneh Farrokhzad,
  • Piotr Kuświk,
  • Feliks Stobiecki,
  • Maciej Urbaniak,
  • Sapida Akhundzada,
  • Arno Ehresmann,
  • Thomas M. Fischer,
  • Daniel de las Heras

DOI
https://doi.org/10.1038/s41467-023-43390-0
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Topological protection ensures stability of information and particle transport against perturbations. We explore experimentally and computationally the topologically protected transport of magnetic colloids above spatially inhomogeneous magnetic patterns, revealing that transport complexity can be encoded in both the driving loop and the pattern. Complex patterns support intricate transport modes when the microparticles are subjected to simple time-periodic loops of a uniform magnetic field. We design a pattern featuring a topological defect that functions as an attractor or a repeller of microparticles, as well as a pattern that directs microparticles along a prescribed complex trajectory. Using simple patterns and complex loops, we simultaneously and independently control the motion of several identical microparticles differing only in their positions above the pattern. Combining complex patterns and complex loops we transport microparticles from unknown locations to predefined positions and then force them to follow arbitrarily complex trajectories concurrently. Our findings pave the way for new avenues in transport control and dynamic self-assembly in colloidal science.