BMC Plant Biology (May 2024)

Genome-wide characterization and expression profiling of E2F/DP gene family members in response to abiotic stress in tomato (Solanum lycopersicum L.)

  • Dhanasekar Divya,
  • Arif Hasan Khan Robin,
  • Lae-Hyeon Cho,
  • Dohyeon Kim,
  • Do-jin Lee,
  • Chang-Kil Kim,
  • Mi-Young Chung

DOI
https://doi.org/10.1186/s12870-024-05107-3
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background E2F/DP (Eukaryotic 2 transcription factor/dimerization partner) family proteins play an essential function in the cell cycle development of higher organisms. E2F/DP family genes have been reported only in a few plant species. However, comprehensive genome-wide characterization analysis of the E2F/DP gene family of Solanum lycopersicum has not been reported so far. Results This study identified eight nonredundant SlE2F/DP genes that were classified into seven groups in the phylogenetic analysis. All eight genes had a single E2F-TDP domain and few genes had additional domains. Two segmental duplication gene pairs were observed within tomato, in addition to cis-regulatory elements, miRNA target sites and phosphorylation sites which play an important role in plant development and stress response in tomato. To explore the three-dimensional (3D) models and gene ontology (GO) annotations of SlE2F/DP proteins, we pointed to their putative transporter activity and their interaction with several putative ligands. The localization of SlE2F/DP-GFP fused proteins in the nucleus and endoplasmic reticulum suggested that they may act in other biological functions. Expression studies revealed the differential expression pattern of most of the SlE2F/DP genes in various organs. Moreover, the expression of E2F/DP genes against abiotic stress, particularly SlE2F/DP2 and/or SlE2F/DP7, was upregulated in response to heat, salt, cold and ABA treatment. Furthermore, the co-expression analysis of SlE2F/DP genes with multiple metabolic pathways was co-expressed with defence genes, transcription factors and so on, suggested their crucial role in various biological processes. Conclusions Overall, our findings provide a way to understand the structure and function of SlE2F/DP genes; it might be helpful to improve fruit development and tolerance against abiotic stress through marker-assisted selection or transgenic approaches.

Keywords