Polymers (Apr 2024)

Preparation of Activated Carbon-Reinforced Composite Beads Based on MnO<sub>2</sub>/MCM-41@Fe<sub>3</sub>O<sub>4</sub> and Calcium Alginate for Efficient Removal of Tetracycline in Aqueous Solutions

  • Zhigong Zheng,
  • Ronghui Shi,
  • Xiaoping Zhang,
  • Yonghao Ni,
  • Hui Zhang

DOI
https://doi.org/10.3390/polym16081115
Journal volume & issue
Vol. 16, no. 8
p. 1115

Abstract

Read online

Tetracycline (TC) is a common antibiotic; when untreated TC enters the environment, it will cause a negative impact on the human body through the food chain. In the present study, MnO2/MCM-41@Fe3O4 (FeMnMCM) prepared using a hydrothermal and redox method and Camellia oleifera shell-activated carbon (COFAC) prepared through alkali activation were encapsulated using alginate (ALG) and calcium chloride as a cross-linking matrix to give the composite beads COFAC–FeMnMCM–ALG. The resultant COFAC–FeMnMCM–ALG composite beads were then carefully characterized, showing a high immobilization of MnO2/MCM-41@Fe3O4, with porous COFAC as an effective bioadsorbent for enriching the pollutants in the treated samples. These bead catalysts were subsequently applied to the oxidative degradation of TC in a Fenton oxidation system. Several parameters affecting the degradation were investigated, including the H2O2 concentration, catalyst dosage, initial TC concentration, and temperature. A very high catalytic activity towards the degradation of TC was demonstrated. The electron paramagnetic resonance (EPR) and quenching results showed that ·OH and ·O2− were generated in the system, with ·OH as the main radical species. In addition, the COFAC–FeMnMCM–ALG catalyst exhibited excellent recyclability/reusability. We conclude that the as-prepared COFAC–FeMnMCM–ALG composite beads, which integrate MnO2 and Fe3O4 with bioadsorbents, provide a new idea for the design of catalysts for advanced oxidation processes (AOPs) and have great potential in the Fenton oxidation system to degrade toxic pollutants.

Keywords