Revista Integración (Jul 2018)
A proof of Holsztyński theorem
Abstract
For a compact Hausdorff space, we denote by C(K) the Banach space of continuous functions defined in K with values in R or C. A well known result in Banach spaces of continuous functions is the Holsztyński theorem which establishes that if C(K) is isometric to a subspace of C(S), then K is a continuous image of S. The aim of this paper is to give an alternative proof of this result for extremely regular subspaces of C(K).
Keywords