Bioresources and Bioprocessing (Jul 2023)

Sustainable production of bacterioruberin carotenoid and its derivatives from Arthrobacter agilis NP20 on whey-based medium: optimization and product characterization

  • Nehad Noby,
  • Sherine N. Khattab,
  • Nadia A. Soliman

DOI
https://doi.org/10.1186/s40643-023-00662-3
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Bacterioruberin and its rare glycosylated derivatives are produced by Arthrobacter agilis as an adaptation strategy to low temperature conditions. The high antioxidant properties of bacterioruberin held great promise for different future applications like the pharmaceutical and food industries. Microbial production of bacterioruberin via a cost-effective medium will help increase its commercial availability and industrial use. The presented study aims to optimize the production of the rare C50 carotenoid bacterioruberin and its derivatives from the psychotrophic bacteria Arthrobacter agilis NP20 strain on a whey-based medium as a cost effective and readily available nutritious substrate. The aim of the study is extended to assess the efficiency of whey treatment in terms of estimating total nitrogen content in treated and untreated whey samples. The significance of medium ingredients on process outcome was first tested individually; then the most promising factors were further optimized using Box Behnken design (BBD). The produced carotenoids were characterized using UV–visible spectroscopy, FTIR spectroscopy, HPLC–DAD chromatography and HPLC-APCI-MS spectrometry. The maximum pigment yield (5.13 mg/L) was achieved after a 72-h incubation period on a core medium composed of 96% sweet whey supplemented with 0.46% MgSO4 & 0.5% yeast extract and inoculated with 6% (v/v) of a 24 h pre-culture (109 CFU/mL). The cost of the formulated medium was 1.58 $/L compared with 30.1 $/L of Bacto marine broth medium. The extracted carotenoids were identified as bacterioruberin, bis-anhydrobacteriouberin, mono anhydrobacterioruberin, and glycosylated bacterioruberin. The presented work illustrates the possibility of producing bacterioruberin carotenoid from Arthrobacter agilis through a cost-effective and eco-friendly approach using cheese whey-based medium. Graphical Abstract

Keywords