International Journal of Mathematics and Mathematical Sciences (Jan 1990)

The Dittert's function on a set of nonnegative matrices

  • Suk Geun Hwang,
  • Mun-Gu Sohn,
  • Si-Ju Kim

DOI
https://doi.org/10.1155/s0161171290000953
Journal volume & issue
Vol. 13, no. 4
pp. 709 – 716

Abstract

Read online

Let Kn denote the set of all n×n nonnegative matrices with entry sum n. For X∈Kn with row sum vector (r1,…,rn), column sum vector (c1,…,cn), Let ϕ(X)=∏iri+∏jcj−perX. Dittert's conjecture asserts that ϕ(X)≤2−n!/nn for all X∈Kn with equality iff X=[1/n]n×n. This paper investigates some properties of a certain subclass of Kn related to the function ϕ and the Dittert's conjecture.

Keywords