Open Mathematics (Oct 2020)

Revisiting the sub- and super-solution method for the classical radial solutions of the mean curvature equation

  • Obersnel Franco,
  • Omari Pierpaolo

DOI
https://doi.org/10.1515/math-2020-0097
Journal volume & issue
Vol. 18, no. 1
pp. 1185 – 1205

Abstract

Read online

This paper focuses on the existence and the multiplicity of classical radially symmetric solutions of the mean curvature problem:−div∇v1+|∇v|2=f(x,v,∇v)inΩ,a0v+a1∂v∂ν=0on∂Ω,\left\{\begin{array}{ll}-\text{div}\left(\frac{\nabla v}{\sqrt{1+|\nabla v{|}^{2}}}\right)=f(x,v,\nabla v)& \text{in}\hspace{.5em}\text{Ω},\\ {a}_{0}v+{a}_{1}\tfrac{\partial v}{\partial \nu }=0& \text{on}\hspace{.5em}\partial \text{Ω},\end{array}\right.with Ω\text{Ω} an open ball in ℝN{{\mathbb{R}}}^{N}, in the presence of one or more couples of sub- and super-solutions, satisfying or not satisfying the standard ordering condition. The novel assumptions introduced on the function f allow us to complement or improve several results in the literature.

Keywords