Metals (Aug 2019)
Analysis on Electromagnetic Field of Continuous Casting Mold Including a New Integral Method for Calculating Electromagnetic Torque
Abstract
Based on the Maxwell’s equations, a finite element model is established to study the characteristics of electromagnetic field in the mold of billet and bloom continuous casting with electromagnetic stirring (M-EMS). A novel integral method for calculating electromagnetic torque is proposed to evaluate the stirring intensity of stirrer. In order to verify the accuracy of the model, a well-designed electromagnetic torque detecting device is fabricated. The predicted value of electromagnetic torque and magnetic flux density are consistent with the measured data. The optimum frequency is determined by the maximal electromagnetic torque of the strand. The effect of stirring current intensity and different stirrer positions along the length of mold on the electromagnetic field has been studied numerically. The results show that the optimum frequency is smaller when the copper tube of the mold is thicker and the section size is bigger. Besides, the electromagnetic torque of the strand is a quadratic function of the running current intensity. Moreover, the installation position of stirrer strongly affects the prediction of electromagnetic field distribution, further influencing the optimum frequency and the electromagnetic torque of strand.
Keywords