Forum of Mathematics, Pi (Jan 2021)
The fields of values of characters of degree not divisible by p
Abstract
We study the fields of values of the irreducible characters of a finite group of degree not divisible by a prime p. In the case where $p=2$, we fully characterise these fields. In order to accomplish this, we generalise the main result of [ILNT] to higher irrationalities. We do the same for odd primes, except that in this case the analogous results hold modulo a simple-to-state conjecture on the character values of quasi-simple groups.
Keywords