Neoplasia: An International Journal for Oncology Research (Jul 2019)

Induced Chromosomal Aneuploidy Results in Global and Consistent Deregulation of the Transcriptome of Cancer Cells

  • Darawalee Wangsa,
  • Rüdiger Braun,
  • Christina H. Stuelten,
  • Markus Brown,
  • Kerry M. Bauer,
  • Georg Emons,
  • Leigh A. Weston,
  • Yue Hu,
  • Howard H. Yang,
  • Maria Vila-Casadesús,
  • Maxwell P. Lee,
  • Philip Brauer,
  • Lidia Warner,
  • Madhvi Upender,
  • Amanda B. Hummon,
  • Jordi Camps,
  • Thomas Ried

Journal volume & issue
Vol. 21, no. 7
pp. 721 – 729

Abstract

Read online

Chromosomal aneuploidy is a defining feature of epithelial cancers. The pattern of aneuploidies is cancer-type specific. For instance, the gain of chromosome 13 occurs almost exclusively in colorectal cancer. We used microcell-mediated chromosome transfer to generate gains of chromosome 13 in the diploid human colorectal cancer cell line DLD-1. Extra copies of chromosome 13 resulted in a significant and reproducible up-regulation of transcript levels of genes on chromosome 13 (P = .0004, FDR = 0.01) and a genome-wide transcriptional deregulation in all 8 independent clones generated. Genes contained in two clusters were particularly affected: the first cluster on cytoband 13q13 contained 7 highly up-regulated genes (NBEA, MAB21L1, DCLK1, SOHLH2, CCDC169, SPG20 and CCNA1, P = .0003) in all clones. A second cluster was located on 13q32.1 and contained five upregulated genes (ABCC4, CLDN10, DZIP1, DNAJC3 and UGGT2, P = .003). One gene, RASL11A, localized on chromosome band 13q12.2, escaped the copy number-induced overexpression and was reproducibly and significantly down-regulated on the mRNA and protein level (P = .0001, FDR = 0.002). RASL11A expression levels were also lower in primary colorectal tumors as compared to matched normal mucosa (P = .0001, FDR = 0.0001. Overexpression of RASL11A increases cell proliferation and anchorage independent growth while decreasing cell migration in +13 clones. In summary, we observed a strict correlation of genomic copy number and resident gene expression levels, and aneuploidy dependent consistent genome-wide transcriptional deregulation.