A Pilot Study on Proteomic Predictors of Mortality in Stable COPD
Cesar Jessé Enríquez-Rodríguez,
Carme Casadevall,
Rosa Faner,
Sergi Pascual-Guardia,
Ady Castro-Acosta,
José Luis López-Campos,
Germán Peces-Barba,
Luis Seijo,
Oswaldo Antonio Caguana-Vélez,
Eduard Monsó,
Diego Rodríguez-Chiaradia,
Esther Barreiro,
Borja G. Cosío,
Alvar Agustí,
Joaquim Gea,
on behalf of the BIOMEPOC Group
Affiliations
Cesar Jessé Enríquez-Rodríguez
Hospital del Mar Research Institute, Respiratory Medicine Department, Hospital del Mar. Medicine and Life Sciences Department, Universitat Pompeu Fabra (UPF), BRN, 08018 Barcelona, Spain
Carme Casadevall
Hospital del Mar Research Institute, Respiratory Medicine Department, Hospital del Mar. Medicine and Life Sciences Department, Universitat Pompeu Fabra (UPF), BRN, 08018 Barcelona, Spain
Rosa Faner
Centro de Investigación Biomédica en Red, Área de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
Sergi Pascual-Guardia
Hospital del Mar Research Institute, Respiratory Medicine Department, Hospital del Mar. Medicine and Life Sciences Department, Universitat Pompeu Fabra (UPF), BRN, 08018 Barcelona, Spain
Ady Castro-Acosta
Centro de Investigación Biomédica en Red, Área de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
José Luis López-Campos
Centro de Investigación Biomédica en Red, Área de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
Germán Peces-Barba
Centro de Investigación Biomédica en Red, Área de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
Luis Seijo
Centro de Investigación Biomédica en Red, Área de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
Oswaldo Antonio Caguana-Vélez
Hospital del Mar Research Institute, Respiratory Medicine Department, Hospital del Mar. Medicine and Life Sciences Department, Universitat Pompeu Fabra (UPF), BRN, 08018 Barcelona, Spain
Eduard Monsó
Centro de Investigación Biomédica en Red, Área de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
Diego Rodríguez-Chiaradia
Hospital del Mar Research Institute, Respiratory Medicine Department, Hospital del Mar. Medicine and Life Sciences Department, Universitat Pompeu Fabra (UPF), BRN, 08018 Barcelona, Spain
Esther Barreiro
Hospital del Mar Research Institute, Respiratory Medicine Department, Hospital del Mar. Medicine and Life Sciences Department, Universitat Pompeu Fabra (UPF), BRN, 08018 Barcelona, Spain
Borja G. Cosío
Centro de Investigación Biomédica en Red, Área de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
Alvar Agustí
Centro de Investigación Biomédica en Red, Área de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
Joaquim Gea
Hospital del Mar Research Institute, Respiratory Medicine Department, Hospital del Mar. Medicine and Life Sciences Department, Universitat Pompeu Fabra (UPF), BRN, 08018 Barcelona, Spain
Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of global mortality. Despite clinical predictors (age, severity, comorbidities, etc.) being established, proteomics offers comprehensive biological profiling to obtain deeper insights into COPD pathophysiology and survival prognoses. This pilot study aimed to identify proteomic footprints that could be potentially useful in predicting mortality in stable COPD patients. Plasma samples from 40 patients were subjected to both blind (liquid chromatography–mass spectrometry) and hypothesis-driven (multiplex immunoassays) proteomic analyses supported by artificial intelligence (AI) before a 4-year clinical follow-up. Among the 34 patients whose survival status was confirmed (mean age 69 ± 9 years, 29.5% women, FEV1 42 ± 15.3% ref.), 32% were dead in the fourth year. The analysis identified 363 proteins/peptides, with 31 showing significant differences between the survivors and non-survivors. These proteins predominantly belonged to different aspects of the immune response (12 proteins), hemostasis (9), and proinflammatory cytokines (5). The predictive modeling achieved excellent accuracy for mortality (90%) but a weaker performance for days of survival (Q2 0.18), improving mildly with AI-mediated blind selection of proteins (accuracy of 95%, Q2 of 0.52). Further stratification by protein groups highlighted the predictive value for mortality of either hemostasis or pro-inflammatory markers alone (accuracies of 95 and 89%, respectively). Therefore, stable COPD patients’ proteomic footprints can effectively forecast 4-year mortality, emphasizing the role of inflammatory, immune, and cardiovascular events. Future applications may enhance the prognostic precision and guide preventive interventions.