Horticulturae (Jul 2022)
Root Morphological and Physiological Adaptations to Low Phosphate Enhance Phosphorus Efficiency at Melon (<i>Cucumis melo</i> L.) Seedling Stage
Abstract
The high phosphorus (P) acquisition ability of crops can reduce their dependence on artificial inorganic phosphate (Pi) supplementation under Pi-limited conditions. Melon (Cucumis melo L.) is vulnerable to Pi deficiency. This study was carried out to explore the morphological and physiological responses of melon to low-Pi stress under a hydroponic system. The results show that low-Pi stress significantly disturbed nutrient homeostasis, reduced P content, and resulted in iron accumulation in melon seedlings and brown iron plaque formation on the root surface. A nutrient pool of P and Fe formed on the roots to forage for more Pi under low-Pi conditions. Severe long-term low-Pi stress promoted primary root elongation and inhibited lateral root growth, which increased the longitudinal absorption zone of the roots. The decrease in P content of the roots upregulated the expression of the acid phosphatase (APase) gene and increased APase activity. The high-affinity phosphate transporter (Pht1) genes were also upregulated significantly. These morphological and physiological responses significantly increased Pi uptake rate and P utilization efficiency at the melon seedling stage. These findings will be useful for screening low-Pi-tolerant varieties and sustaining melon production in P-limited environments.
Keywords