Sensors (Feb 2019)

Multi-Pig Part Detection and Association with a Fully-Convolutional Network

  • Eric T. Psota,
  • Mateusz Mittek,
  • Lance C. Pérez,
  • Ty Schmidt,
  • Benny Mote

DOI
https://doi.org/10.3390/s19040852
Journal volume & issue
Vol. 19, no. 4
p. 852

Abstract

Read online

Computer vision systems have the potential to provide automated, non-invasive monitoring of livestock animals, however, the lack of public datasets with well-defined targets and evaluation metrics presents a significant challenge for researchers. Consequently, existing solutions often focus on achieving task-specific objectives using relatively small, private datasets. This work introduces a new dataset and method for instance-level detection of multiple pigs in group-housed environments. The method uses a single fully-convolutional neural network to detect the location and orientation of each animal, where both body part locations and pairwise associations are represented in the image space. Accompanying this method is a new dataset containing 2000 annotated images with 24,842 individually annotated pigs from 17 different locations. The proposed method achieves over 99% precision and over 96% recall when detecting pigs in environments previously seen by the network during training. To evaluate the robustness of the trained network, it is also tested on environments and lighting conditions unseen in the training set, where it achieves 91% precision and 67% recall. The dataset is publicly available for download.

Keywords