Neurotrauma Reports (Aug 2022)

Branched-Chain Amino Acids Are Neuroprotective Against Traumatic Brain Injury and Enhance Rate of Recovery: Prophylactic Role for Contact Sports and Emergent Use

  • Rob D. Dickerman,
  • Julie Williamson,
  • Ezek Mathew,
  • Christopher M. Butt,
  • Clark W. Bird,
  • Lauren E. Hood,
  • Vivian Grimshaw

DOI
https://doi.org/10.1089/NEUR.2022.0031
Journal volume & issue
Vol. 3, no. 1
pp. 321 – 332

Abstract

Read online

Branched-chain amino acids (BCAAs) are known to be neurorestorative after traumatic brain injury (TBI). Despite clinically significant improvements in severe TBI patients given BCAAs after TBI, the approach is largely an unrecognized option. Further, TBI continues to be the most common cause of morbidity and mortality in adolescents and adults. To date, no study has evaluated whether BCAAs can be preventive or neuroprotective if taken before a TBI. We hypothesized that if BCAAs were elevated in the circulation before TBI, the brain would readily access the BCAAs and the severity of injury would be reduced. Before TBI induction with a standard weight-drop method, 50 adult mice were randomized into groups that were shams, untreated, and pre-treated, post-treated, or pre- + post-treated with BCAAs. Pre-treated mice received BCAAs through supplemented water and were dosed by oral gavage 45?min before TBI induction. All mice underwent beam walking to assess motor recovery, and the Morris water maze assessed cognitive function post-injury. On post-injury day 14, brains were harvested to assess levels of astrocytes and microglia with glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA-1) immunohistochemistry, respectively. Pre-treated and pre- +post-treated mice exhibited significantly better motor recovery and cognitive function than the other groups. The pre- + post-treated group had the best overall memory performance, whereas the pre-treated and post-treated groups only had limited improvements in memory compared to untreated animals. Pre- + post-treated brains had levels of GFAP that were similar to the sham group, whereas the pre-only and post-only groups showed increases. Although trends existed, no meaningful changes in IBA-1 were detected. This is the first study, animal or human, to demonstrate that BCAA are neuroprotective and substantiates their neurorestorative benefits after TBI, most likely through the important roles of BCAAs to glutamate homeostasis.

Keywords