Separations (Dec 2020)
Synthesis and Characterization of B/NaF and Silicon Phthalocyanine-Modified TiO<sub>2</sub> and an Evaluation of Their Photocatalytic Removal of Carbamazepine
Abstract
This study investigated the synthesis of two different types of photocatalysts, namely, boron/sodium fluoride co-doped titanium dioxide (B/NaF-TiO2), and its analogue, a dye-sensitized form of silicon-based axial methoxy substituted phthalocyanine (B/NaF-TiO2SiPc). Structural and morphological characterizations were performed via X-ray diffraction (XRD); Fourier transform infra-red (FTIR); N2 adsorption–desorption at 77 K by Brunauer–Emmett–Teller (BET) and Barrett, Joyner, and Halenda (BJH) methods; transmission electron microscopy (TEM); X-ray photoelectron spectroscopy (XPS); and UV–visible absorption spectroscopy. The estimated crystallite size of pure TiO2 and pure B/NaF-TiO2 was 24 nm, and that of B/NaF-TiO2SiPc was 29 nm, whereas particle sizes determined by TEM were 25, 28, and 31 nm for pure TiO2, B/NaF-TiO2 and B/NaF-TiO2SiPc respectively. No significant differences between B/NaF-TiO2 and B/NaF-TiO2SiPc were observed for surface area by (BET) analysis (13 m2/g) or total pore volume by the BJH application model (0.05 cm3/g). Energy band gap values obtained for B/NaF-TiO2 and B/NaF-TiO2SiPc were 3.10 and 2.90 eV respectively, lower than pure TiO2 (3.17 eV). The photocatalytic activity of the synthesized materials was tested using carbamazepine (CBZ) as the model substrate. Carbamazepine removal after 4 h of irradiation was almost 100% for B/NaF-TiO2 and 70% for B/NaF-TiO2SiPc; however, the substrate mineralization proceeded slower, suggesting the presence of organic intermediates after the complete disappearance of the pollutant.
Keywords