Physical Review Special Topics. Physics Education Research (Jul 2007)
Elements of a cognitive model of physics problem solving: Epistemic games
Abstract
Although much is known about the differences between expert and novice problem solvers, knowledge of those differences typically does not provide enough detail to help instructors understand why some students seem to learn physics while solving problems and others do not. A critical issue is how students access the knowledge they have in the context of solving a particular problem. In this paper, we discuss our observations of students solving physics problems in authentic situations in an algebra-based physics class at the University of Maryland. We find that when these students are working together and interacting effectively, they often use a limited set of locally coherent resources for blocks of time of a few minutes or more. This coherence appears to provide the student with guidance as to what knowledge and procedures to access and what to ignore. Often, this leads to the students failing to apply relevant knowledge they later show they possess. In this paper, we outline a theoretical phenomenology for describing these local coherences and identify six organizational structures that we refer to as epistemic games. The hypothesis that students tend to function within the narrow confines of a fairly limited set of games provides a good description of our observations. We demonstrate how students use these games in two case studies and discuss the implications for instruction.