Energies (Jul 2024)

Experimental Evaluation of Enhanced Oil Recovery in Shale Reservoirs Using Different Media

  • Jiaping Tao,
  • Siwei Meng,
  • Dongxu Li,
  • Lihao Liang,
  • He Liu

DOI
https://doi.org/10.3390/en17143410
Journal volume & issue
Vol. 17, no. 14
p. 3410

Abstract

Read online

The presence of highly developed micro-nano pores and poor pore connectivity constrains the development of shale oil. Given the rapid decline in oil production , enhanced oil recovery (EOR) technologies are necessary for shale oil development. The shale oil reservoirs in China are mainly continental and characterized by high heterogeneity, low overall maturity, and inferior crude oil quality. Therefore, it is more challenging to achieve a desirably high recovery factor. The Qingshankou Formation is a typical continental shale oil reservoir, with high clay content and well-developed bedding. This paper introduced high-precision non-destructive nuclear magnetic resonance technology to carry out a systematic and targeted study. The EOR performances and oil recovery factors related to different pore sizes were quantified to identify the most suitable method. The results show that surfactant, CH4, and CO2 can recover oil effectively in the first cycle. As the huff-and-puff process continues, the oil saturated in the shale gradually decreases, and the EOR performance of the surfactant and CH4 is considerably degraded. Meanwhile, CO2 can efficiently recover oil in small pores (2 is 38.22%, which is much higher than that of surfactant (29.82%) and CH4 (19.36%). CO2 is the most applicable medium of the three to enhance shale oil recovery in the Qingshankou Formation. Additionally, the injection pressure of surfactant increased the fastest in the injection process, showing a low flowability in nano-pores. Thus, in the actual shale oil formations, the swept volume of surfactant will be suppressed, and the actual EOR performance of the surfactant may be limited. The findings of this paper can provide theoretical support for the efficient development of continental shale oil reservoirs.

Keywords