Sensors (Aug 2024)

An Optical Device Based on a Chemical Chip and Surface Plasmon Platform for 2-Furaldehyde Detection in Insulating Oil

  • Letizia De Maria,
  • Francesco Arcadio,
  • Giuseppe Gabetta,
  • Daniele Merli,
  • Giancarla Alberti,
  • Luigi Zeni,
  • Nunzio Cennamo,
  • Maria Pesavento

DOI
https://doi.org/10.3390/s24165261
Journal volume & issue
Vol. 24, no. 16
p. 5261

Abstract

Read online

2-Furaldehyde (2-FAL) is one of the main by-products of the degradation of hemicellulose, which is the solid material of the oil–paper insulating system of oil-filled transformers. For this reason, it has been suggested as a marker of the degradation of the insulating system; sensing devices for 2-FAL analysis in a wide concentration range are of high interest in these systems. An optical sensor system is proposed; this consists of a chemical chip, able to capture 2-FAL from the insulating oil, coupled with a surface plasmon resonance (SPR) probe, both realized on multimode plastic optical fibers (POFs). The SPR platform exploits gold nanofilm or, alternatively, a double layer of gold and silicon oxide to modulate the sensor sensitivity. The capturing chip is always based on the same molecularly imprinted polymer (MIP) as a receptor specific for 2-FAL. The system with the SPR probe based on a gold nanolayer had a higher sensitivity and a lower detection limit of fractions of μg L−1. Instead, the SPR probe, based on a double layer (gold and silicon oxide), has a lower sensitivity with a worse detection limit, and it is suitable for the detection of 2-FAL at concentrations of 0.01–1 mg L−1.

Keywords