Журнал Белорусского государственного университета: Математика, информатика (Apr 2022)

An upper bound on binomial coefficients in the de Moivre – Laplace form

  • Sergey V. Agievich

DOI
https://doi.org/10.33581/2520-6508-2022-1-66-74
Journal volume & issue
no. 1
pp. 66 – 74

Abstract

Read online

We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh – Hadamard spectra, obtain restrictions on the number of representations as sums of squares of integers bounded in magnitude.

Keywords