Журнал Белорусского государственного университета: Математика, информатика (Apr 2022)
An upper bound on binomial coefficients in the de Moivre – Laplace form
Abstract
We provide an upper bound on binomial coefficients that holds over the entire parameter range an whose form repeats the form of the de Moivre – Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh – Hadamard spectra, obtain restrictions on the number of representations as sums of squares of integers bounded in magnitude.
Keywords