European Physical Journal C: Particles and Fields (Jul 2021)

Mixture density network estimation of continuous variable maximum likelihood using discrete training samples

  • Charles Burton,
  • Spencer Stubbs,
  • Peter Onyisi

DOI
https://doi.org/10.1140/epjc/s10052-021-09469-y
Journal volume & issue
Vol. 81, no. 7
pp. 1 – 9

Abstract

Read online

Abstract Mixture density networks (MDNs) can be used to generate posterior density functions of model parameters $$\varvec{\theta }$$ θ given a set of observables $${\mathbf {x}}$$ x . In some applications, training data are available only for discrete values of a continuous parameter $$\varvec{\theta }$$ θ . In such situations, a number of performance-limiting issues arise which can result in biased estimates. We demonstrate the usage of MDNs for parameter estimation, discuss the origins of the biases, and propose a corrective method for each issue.