Catalysis Communications (Jan 2024)
Mechanical forces hammer Mn into Bi3O4Br under room temperature for efficient photocatalytic degradation
Abstract
A rapid mechanical ball milling method at room temperature has been proposed for Mn2+ doping. The mechanical force generated by the ball milling process was able to hammer Mn atom into the Bi3O4Br lattice in an efficient and stable manner. Doping with Mn2+ produces a doping level in the forbidden band. Also, Mn2+ promptly scavenged the photogenerated holes, reducing the recombination of photogenerated carriers and promoting the production of numerous active species. As a result, Mn2+ doped Bi3O4Br exhibited enhanced photodegradation performance towards antibiotic tetracycline, in which the optimal efficiency arrives 81.74%, 1.22 times higher than Bi3O4Br.