Geophysical Research Letters (Sep 2023)

The Dependence of Climate Sensitivity on the Meridional Distribution of Radiative Forcing

  • Bosong Zhang,
  • Ming Zhao,
  • Haozhe He,
  • Brian J. Soden,
  • Zhihong Tan,
  • Baoqiang Xiang,
  • Chenggong Wang

DOI
https://doi.org/10.1029/2023GL105492
Journal volume & issue
Vol. 50, no. 18
pp. n/a – n/a

Abstract

Read online

Abstract This study investigates how climate sensitivity depends upon the spatial pattern of radiative forcing. Sensitivity experiments using a coupled ocean‐atmosphere model were conducted by adding anomalous incoming solar radiation over the entire globe, Northern Hemisphere mid‐latitudes, Southern Ocean, and tropics. The varied forcing patterns led to highly divergent climate sensitivities. Specifically, the climate is nearly twice as sensitive to Southern Ocean forcing as tropical forcing. Strong coupling between the surface and free troposphere in the tropics increases the inversion strength, leading to smaller cloud feedback in the tropical forcing experiments. In contrast, the extratropics exhibit weaker coupling, a decrease or near‐zero change in the inversion strength, and strong positive cloud feedback. These results contrast with the conventional SST‐pattern effect in which tropical surface temperature changes regulate climate sensitivity. They also have important implications for other potentially asymmetric forcings, such as those from geoengineering, volcanic eruptions, and paleoclimatic changes.

Keywords