Energies (Oct 2019)

Biogas and Methane Potential of Pre-Thermally Disintegrated Bio-Waste

  • Sylwia Myszograj

DOI
https://doi.org/10.3390/en12203880
Journal volume & issue
Vol. 12, no. 20
p. 3880

Abstract

Read online

One of the environmental solutions employed in order to achieve circular economy goals is methane fermentation—a technology that is beneficial both for the stabilization and reduction of organic waste and for alternative energy generation. The article presents the results of research aimed at determining the biogas and methane potential of bio-waste which has been pre-thermally disintegrated, and determining the influence of variable process parameters of disintegration on the kinetics of fermentation. A first-order kinetic model was used to describe the fermentation as well as two mathematical models: logistic and Gompertz. It has been found that process parameters such as time (0.5, 1 and 2 h) and temperature (between 55 to 175 °C) have a significant effect on the solubilization efficiency of the bio-waste. The methane fermentation of thermally disintegrated bio-waste showed that the highest biogas potential is characterized by samples treated, respectively, for 0.5 h at 155 °C and for 2 h at 175 °C. The best match for the experimental data of biogas production from disintegrated substrates was demonstrated for the Gompertz model.

Keywords