Atmosphere (Apr 2020)
Evaluation for Characteristics of Tropical Cyclone Induced Heavy Rainfall over the Sub-basins in The Central Hokkaido, Northern Japan by 5-km Large Ensemble Experiments
Abstract
Previous studies have shown that the acceleration of global warming will increase the intensity of rainfall induced by tropical cyclones (TCs) (hereinafter referred to as “TC-induced rainfall”). TC-induced rainfall is affected by TC position and topography (slope shape and direction). Thus, TC-induced rainfall is expected to vary by sub-basin due to varying topographies. However, these relationships have not been explained, as historical TCs, which occurred several decades earlier, do not exhaustively encompass all TC positions that could potentially affect each basin. We used large ensemble regional climate model experiments with 5 km grid spacing, which enabled us to prepare a huge TC database for understanding the characteristics of TC-induced rainfall over sub-basins. We quantified the characteristics of TC-induced rainfall (rainfall volume, relationship between TC position and rainfall intensity, and contribution of TC intensity on rainfall) over four sub-basins in the Tokachi River basin, central Hokkaido, northern Japan. The results reveal differences in TC-induced rainfall characteristics between the sub-basins. In addition, the large ensemble data under a future climate scenario were used to evaluate future changes in the characteristics of TC-induced rainfall for each sub-basin.
Keywords