Insects (Mar 2019)
Heterologous Expression of Aedes aegypti Cation Chloride Cotransporter 2 (aeCCC2) in Xenopus laevis Oocytes Induces an Enigmatic Na+/Li+ Conductance
Abstract
The yellow fever mosquito Aedes aegypti possesses three genes encoding putative Na+-coupled cation chloride cotransporters (CCCs): aeNKCC1, aeCCC2, and aeCCC3. To date, none of the aeCCCs have been functionally characterized. Here we expressed aeCCC2 heterologously in Xenopus oocytes and measured the uptake of Li+ (a tracer for Na+) and Rb+ (a tracer for K+). Compared to control (H2O-injected) oocytes, the aeCCC2-expressing oocytes exhibited significantly greater uptake of Li+, but not Rb+. However, the uptake of Li+ was neither Cl−-dependent nor inhibited by thiazide, loop diuretics, or amiloride, suggesting unconventional CCC activity. To determine if the Li+-uptake was mediated by a conductive pathway, we performed two-electrode voltage clamping (TEVC) on the oocytes. The aeCCC2 oocytes were characterized by an enhanced conductance for Li+ and Na+, but not K+, compared to control oocytes. It remains to be determined whether aeCCC2 directly mediates the Na+/Li+ conductance or whether heterologous expression of aeCCC2 stimulates an endogenous cation channel in the oocyte plasma membrane.
Keywords