Energies (Oct 2022)
Low-Carbon Economic Dispatching of Multi-Energy Virtual Power Plant with Carbon Capture Unit Considering Uncertainty and Carbon Market
Abstract
Multi-energy virtual power plants (MEVPPs) effectively realize multi-energy coupling. Low-carbon transformation of coal-fired units at the source side and consideration of demand response resources at the load side are important ways to achieve carbon peak and carbon neutralization. Based on this, this paper proposes a low-carbon economic dispatch model for the MEVPP system considering source-load coordination with comprehensive demand response. Combined with the characteristics of organic Rankine cycle (ORC) waste heat power generation and comprehensive demand response energy to increase the flexibility on both sides of the source and load, the problem of insufficient carbon capture during the peak load period in the process of low-carbon transformation of thermal power units has been improved. First, the ORC waste heat recovery device is introduced into the MEVPP system to decouple the cogeneration unit’s “heat-based electricity” constraint, which improves the flexibility of the unit’s power output. Secondly, we consider the synergistic effect of the comprehensive demand response and ORC waste heat recovery device and analyze the source-load coordination low-carbon dispatch mechanism. Finally, an example simulation is carried out in a typical system. The simulation example shows that this method effectively improves the carbon capture level of carbon capture power plants, takes into account the economy and low carbon of the system, and can provide a reference for the low-carbon economic dispatch of the MEVPP system.
Keywords