Cells (Nov 2023)
Quantification of the Culture Stability of Stem Cell Fractions from Oral-Derived, Human Mesenchymal Stem Cell Preparations: A Significant Step toward the Clinical Translation of Cell Therapies
Abstract
A continuing limitation and major challenge in the development and utilization of predictable stem cell therapies (SCTs) is the determination of the optimal dosages of stem cells. Herein, we report the quantification of stem cell fractions (SCF) of human mesenchymal stem cell (MSC) preparations derived from oral tissues. A novel computational methodology, kinetic stem cell (KSC) counting, was used to quantify the SCF and specific cell culture kinetics of stem cells in oral alveolar bone-derived MSC (aBMSCs) from eight patients. These analyses established, for the first time, that the SCF within these heterogeneous, mixed-cell populations differs significantly among donors, ranging from 7% to 77% (ANOVA p < 0.0001). Both the initial SCF of aBMSC preparations and changes in the level of the SCF with serial culture over time showed a high degree of inter-donor variation. Hence, it was revealed that the stability of the SCF of human aBMSC preparations during serial cell culture shows inter-donor variation, with some patient preparations exhibiting sufficient stability to support the long-term net expansion of stem cells. These findings provide important insights for the clinical-scale expansion and biomanufacturing of MSCs, which can facilitate establishing more effective and predictable outcomes in clinical trials and treatments employing SCT.
Keywords