Majallah-i Dānishgāh-i ’Ulūm-i Pizishkī-i Īlām (Dec 2019)
Prediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network
Abstract
Introduction: It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure. Materials & Methods: This study utilized a multi-layer perceptron artificial neural network and a backpropagation algorithm combined with a genetic algorithm to assess the condition of two patients with cardiovascular diseases. The medical records of 497 patients with cardiovascular diseases at Ayatollah Golpayegani Hospital, Qom, Iran, were collected using a clustering sampling method. The data were analyzed using a Receiver Operating Characteristics Curve. Eventually, the data, including personal and clinical variables of patients (i.e., age, gender, dyspnea, blood pressure variations, and blood test results) were selected using sigmoid-transfer and tangent-sigmoid functions. Following that, the neural network was trained with 19 input neurons and 5 middle-layer neurons. Findings: According to the results, a neural network with 5 middle-layer neurons has more precision, compared to other modes. Therefore, it is possible to predict myocardial infarction in the patients using this neural network with a minimum of 97.7% precision. Discussion & Conclusions: An artificial neural network was combined with a genetic algorithm and proposed as a model to predict myocardial infarction in this study. Moreover, it was attempted to utilize important and cost-effective factors for cardiovascular diseases. As a result, the patients can be aware of their disease at the lowest cost.