Molecular Genetics and Metabolism Reports (Jan 2014)

Biochemical and physiological improvement in a mouse model of Smith–Lemli–Opitz syndrome (SLOS) following gene transfer with AAV vectors

  • Lee Ying,
  • Xavier Matabosch,
  • Montserrat Serra,
  • Berna Watson,
  • Cedric Shackleton,
  • Gordon Watson

DOI
https://doi.org/10.1016/j.ymgmr.2014.02.002
Journal volume & issue
Vol. 1, no. C
pp. 103 – 113

Abstract

Read online

Smith–Lemli–Opitz syndrome (SLOS) is an inborn error of cholesterol synthesis resulting from a defect in 7-dehydrocholesterol reductase (DHCR7), the enzyme that produces cholesterol from its immediate precursor 7-dehydrocholesterol. Current therapy employing dietary cholesterol is inadequate. As SLOS is caused by a defect in a single gene, restoring enzyme functionality through gene therapy may be a direct approach for treating this debilitating disorder. In the present study, we first packaged a human DHCR7 construct into adeno-associated virus (AAV) vectors having either type-2 (AAV2) or type-8 (AAV2/8) capsid, and administered treatment to juvenile mice. While a positive response (assessed by increases in serum and liver cholesterol) was seen in both groups, the improvement was greater in the AAV2/8–DHCR7 treated mice. Newborn mice were then treated with AAV2/8–DHCR7 and these mice, compared to mice treated as juveniles, showed higher DHCR7 mRNA expression in liver and a greater improvement in serum and liver cholesterol levels. Systemic treatment did not affect brain cholesterol in any of the experimental groups. Both juvenile and newborn treatments with AAV2/8–DHCR7 resulted in increased rates of weight gain indicating that gene transfer had a positive physiological effect.

Keywords