Nuclear Engineering and Technology (Feb 2024)

Simulation-based analysis of total ionizing dose effects on low noise amplifier for wireless communications

  • Gandha Satria Adi,
  • Dong-Seok Kim,
  • Inyong Kwon

Journal volume & issue
Vol. 56, no. 2
pp. 568 – 574

Abstract

Read online

The development of radiation-tolerant radio-frequency (RF) systems can be a solution for applications in extreme radiation environments, such as nuclear power plant monitoring and space exploration. Among the crucial components within an RF system, the low noise amplifier (LNA) stands out due to its vulnerability to TID effects, mainly relying on transistors as its main devices. In this study, the TID effects in the LNA using standard 0.18 μm complementary metal oxide semiconductors (CMOS) technology are estimated and analyzed. The results show that the LNA can withstand absorbed radiation up to 100 kGy. The S21, S11, noise figure (NF), stability (K), and linearity of the third input intercept point (IIP3) slightly shifted from the initial values of 0.8312 dB, 0.793 dB, 0.00381 dB, 1.34406, and 2.36066 dBm, respectively which are still comparable to the typical performances. Moreover, the standard 0.18 μ m technology has demonstrated its radiation tolerance, as it exhibits negligible performance degradation in the conventional LNA even when exposed to radiation levels up to 100 kGy. In this context, simulation approach offers a means to predict the TID effects and estimate the radiation exposure limit for electronic devices, particularly when transistors are used as the primary RF components.

Keywords