Scientific Reports (Oct 2022)

Carbon dioxide and hydrogen adsorption study on surface-modified HKUST-1 with diamine/triamine

  • Tomas Zelenka,
  • Klaudia Simanova,
  • Robin Saini,
  • Gabriela Zelenkova,
  • Satya Pal Nehra,
  • Anshu Sharma,
  • Miroslav Almasi

DOI
https://doi.org/10.1038/s41598-022-22273-2
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

Abstract The present article intended to study the influence of post-synthetic modification with ethylenediamine (en, diamine) and diethylenetriamine (deta, triamine) within the coordinatively unsaturated sites (CUSs) of HKUST-1 on carbon dioxide and hydrogen storage. The as-sythesized adsorbent was solvent-exchanged and subsequently post-synthetically modified with di-/triamines as sources of amine-based sorption sites due to the increased CO2 storage capacity. It is known that carbon dioxide molecules have a high affinity for amine groups, and moreover, the volume of amine molecules itself reduces the free pore volume in HKUST-1, which is the driving force for increasing the hydrogen storage capacity. Different concentrations of amines were used for modification of HKUST-1, through which materials with different molar ratios of HKUST-1 to amine: 1:0.05; 1:0.1; 1:0.25; 1:0.5; 1:0.75; 1:1; 1:1.5 were synthesized. Adsorption measurements of carbon dioxide at 0 °C up to 1 bar have shown that the compounds can adsorb large amounts of carbon dioxide. In general, deta-modified samples showed higher adsorbed amounts of CO2 compared to en-modified materials, which can be explained by the higher number of amine groups within the deta molecule. With an increasing molar ratio of amines, there was a decrease in wt.% CO2. The maximum storage capacity of CO2 was 22.3 wt.% for HKUST-1: en/1:0.1 and 33.1 wt.% for HKUST-1: deta/1:0.05 at 0 °C and 1 bar. Hydrogen adsorption measurements showed the same trend as carbon dioxide, with the maximum H2 adsorbed amounts being 1.82 wt.% for HKUST-1: en/1:0.1 and 2.28 wt.% for HKUST-1: deta/1:0.05 at − 196 °C and 1 bar.