PLoS ONE (Jan 2020)

Validation of quantitative assessment of indocyanine green fluorescent imaging in a one-vessel model.

  • Anna Duprée,
  • Henrik C Rieß,
  • Philipp H von Kroge,
  • Jakob R Izbicki,
  • Eike S Debus,
  • Oliver Mann,
  • Hans O Pinnschmidt,
  • Detlef Russ,
  • Christian Detter,
  • Sabine H Wipper

DOI
https://doi.org/10.1371/journal.pone.0240188
Journal volume & issue
Vol. 15, no. 11
p. e0240188

Abstract

Read online

ObjectivesEvaluation of intestinal perfusion remains subjective and depends on the surgeon´s individual experience. Intraoperative quality assessment of tissue perfusion with indocyanine green (ICG) fluorescence using a near-infrared camera system has been described in different ways and for different indications. The aim of the present study was to evaluate fluorescent imaging (FI) in the quantitative assessment of intestinal perfusion in a gastric tube model in pigs and to compare the results to results obtained with florescent microspheres (FM), the gold standard for tissue perfusion.MethodsSeven pigs (56.0±3.0 kg), both males and females, underwent gastric tube formation after transection and ligation of the gastric arteries, except the right gastroepiploic artery, to avoid collateral blood flow. After baseline assessment (T0), hypotension (T1) was induced by propofol (Karampinis et al 2017) (90 mmHg) was induced by norepinephrine. Measurements were performed in three regions of interest (ROIs) under standardized conditions: the fundus (D1), corpus (D2), and prepyloric area (D3). Hemodynamic parameters and transit-time flow measurement (TTFM) in the right gastroepiploic artery were continuously assessed. FI, FM and the partial pressure of tissue oxygen (TpO2) were quantified in each ROI.ResultsThe study protocol could successfully be performed during stable hemodynamics. Flow in the gastroepiploic artery measured by transit time flow measurement (TTFM) was related to hemodynamic changes between the measurements, indicating improved blood flow with increasing MAP. The distal part of the gastric tube (D1) showed significantly (pConclusionVisual and quantitative assessment of gastric tube perfusion is feasible in an experimental setting using ICG-FI. This might be a promising tool for intraoperative assessment during visceral surgery in the future.