Remote Sensing (Mar 2022)

Fine-Spatial Boreal–Alpine Single-Tree Albedo Measured by UAV: Experiences and Challenges

  • Eirik Næsset Ramtvedt,
  • Terje Gobakken,
  • Erik Næsset

DOI
https://doi.org/10.3390/rs14061482
Journal volume & issue
Vol. 14, no. 6
p. 1482

Abstract

Read online

The boreal–alpine treeline is a fine-spatial heterogeneous ecotone with small single trees, tree clusters and open snow surfaces during wintertime. Due to climate change and decreased grazing of domestic animals, the treelines expand both upwards into the mountains and northwards into the tundra. To quantify and understand the biophysical radiative climatic feedback effect due to this expansion, it is necessary to establish measurement strategies of fine-spatial albedo by which relationships with the tree structure and snow-masking effect can be quantified. In this study, we measured single-tree Norway spruce albedo for small trees using an unmanned aerial vehicle (UAV). The platform allows the measurement of proximal remotely sensed albedo, enabling the provision of fine-spatial reflectance distributed over larger geographical areas. The albedo measurements varied from 0.39 to 0.99. The interaction between the diurnal course of the sun and sloping terrain constituted the most important driving factor on the albedo. Surprisingly, all tree structural variables revealed smaller correlations with the albedo than typically found for boreal and boreal–alpine summertime albedo. The snow-masking effect of the trees on the albedo was statistically significant and was found to be stronger than the effects of tree structural variables. Only the canopy density had a statistically significant effect on the albedo among the tree structural variables. This was likely explained by the imprecise heading of the hoovering positions of the UAV and insufficient spatial resolution of the reflected radiation measurements. For further development of fine-spatial UAV-measured albedo, we recommend the use of UAVs with high-precision navigation systems and field-stop devices to limit the spatial size of the measured reflected radiation.

Keywords