PLoS ONE (Jan 2023)
Probiotics attenuate valproate-induced liver steatosis and oxidative stress in mice.
Abstract
Valproate (valproic acid, VPA), a drug for the treatment of epilepsy and bipolar disorder, causes liver steatosis with enhanced oxidative stress. Accumulating evidences exhibite that gut microbiota plays an important role in progression of nonalcoholic fatty liver disease (NAFLD). However, whether gut microbiota contributes to VPA-caused hepatic steatosis needs to be elucidated. A mixture of five probiotics was selected to investigate their effects on liver steatosis and oxidative stress in mice orally administered VPA for 30 days. Probiotics treatment significantly attenuated the hepatic lipid accumulation in VPA-treated mice via inhibiting the expression of cluster of differentiation 36 (CD36) and distinct diacylglycerol acyltransferase 2 (DGAT2). Meanwhile, probiotics exerted a protective effect against VPA-induced oxidative stress by decreasing the pro-oxidant cytochrome P450 2E1 (CYP2E1) level and activating the Nrf2/antioxidant enzyme pathway. Moreover, VPA treatment altered the relative abundance of gut microbiota at the phylum, family and genera levels, while probiotics partially restored these changes. Spearman's correlation analysis showed that several specific genera and family were significantly correlated with liver steatosis and oxidative stress-related indicators. These results suggest that probiotics exert their health benefits in the abrogation of liver steatosis and oxidative stress in VPA-treated mice by manipulating the microbial homeostasis.