Separations (Oct 2022)

Qualitative and Quantitative Detection of Acacia Honey Adulteration with Glucose Syrup Using Near-Infrared Spectroscopy

  • Maja Benković,
  • Tamara Jurina,
  • Lucija Longin,
  • Franjo Grbeš,
  • Davor Valinger,
  • Ana Jurinjak Tušek,
  • Jasenka Gajdoš Kljusurić

DOI
https://doi.org/10.3390/separations9100312
Journal volume & issue
Vol. 9, no. 10
p. 312

Abstract

Read online

Honey adulteration with cheap sweeteners such as corn syrup or invert syrup results in honey of lesser quality that can harm the objectives of both manufacturers and consumers. Therefore, there is a growing interest for the development of a fast and simple method for adulteration detection. In this work, near-infrared spectroscopy (NIR) was used for the detection of honey adulteration and changes in the physical and chemical properties of the prepared adulterations. Fifteen (15) acacia honey samples were adulterated with glucose syrup in a range from 10% to 90%. Raw and pre-processed NIR spectra of pure honey samples and prepared adulterations were subjected to Principal Component Analysis (PCA), Partial Least Squares (PLS) regression, and Artificial Neural Network (ANN) modeling. The results showed that PCA ensures distinct grouping of samples in pure honey samples, honey adulterations, and pure adulteration using NIR spectra after the Multiplicative Scatter Correction (MSC) method. Furthermore, PLS models developed for the prediction of the added adulterant amount, moisture content, and conductivity can be considered sufficient for screening based on RPD and RER values (1.7401 2validation of the developed ANN models was greater than 0.86 for all outputs examined. Based on the obtained results, it can be concluded that NIR coupled with ANN modeling can be considered an efficient tool for honey adulteration quantification.

Keywords