PLoS ONE (Jan 2017)
Characterization of the functions and proteomes associated with membrane rafts in chicken sperm.
Abstract
Cellular membranes are heterogeneous, and this has a great impact on cellular function. Despite the central role of membrane functions in multiple cellular processes in sperm, their molecular mechanisms are poorly understood. Membrane rafts are specific membrane domains enriched in cholesterol, ganglioside GM1, and functional proteins, and they are involved in the regulation of a variety of cellular functions. Studies of the functional characterization of membrane rafts in mammalian sperm have demonstrated roles in sperm-egg binding and the acrosomal reaction. Recently, our biochemical and cell biological studies showed that membrane rafts are present and might play functional roles in chicken sperm. In this study, we isolated membrane rafts from chicken sperm as a detergent-resistant membranes (DRM) floating on a density gradient in the presence of 1% Triton X-100, and characterized the function and proteomes associated with these domains. Biochemical comparison of the DRM between fresh and cryopreserved sperm demonstrated that cryopreservation induces cholesterol loss specifically from membrane rafts, indicating the functional connection with reduced post-thaw fertility in chicken sperm. Furthermore, using an avidin-biotin system, we found that sperm DRM is highly enriched in a 60 KDa single protein able to bind to the inner perivitelline layer. To identify possible roles of membrane rafts, quantitative proteomics, combined with a stable isotope dimethyl labeling approach, identified 82 proteins exclusively or relatively more associated with membrane rafts. Our results demonstrate the functional distinctions between membrane domains and provide compelling evidence that membrane rafts are involved in various cellular pathways inherent to chicken sperm.