Molecules (Jul 2018)

Impact of Alkaline H2O2 Pretreatment on Methane Generation Potential of Greenhouse Crop Waste under Anaerobic Conditions

  • N. Altınay Perendeci,
  • Sezen Gökgöl,
  • Derin Orhon

DOI
https://doi.org/10.3390/molecules23071794
Journal volume & issue
Vol. 23, no. 7
p. 1794

Abstract

Read online

This paper intended to explore the effect of alkaline H2O2 pretreatment on the biodegradability and the methane generation potential of greenhouse crop waste. A multi-variable experimental design was implemented. In this approach, initial solid content (3–7%), reaction time (6–24 h), H2O2 concentration (1–3%), and reaction temperature (50–100 °C) were varied in different combinations to determine the impact of alkaline H2O2 pretreatment. The results indicated that the alkaline H2O2 pretreatment induced a significant increase in the range of 200–800% in chemical oxygen demand (COD) leakage into the soluble phase, and boosted the methane generation potential from 174 mLCH4/g of volatile solid (VS) to a much higher bracket of 250–350 mLCH4/gVS. Similarly, the lignocellulosic structure of the material was broken down and hydrolyzed by H2O2 dosing, which increased the rate of volatile matter utilization from 31% to 50–70% depending on selected conditions. Alkaline H2O2 pretreatment was optimized to determine optimal conditions for the enhancement of methane generation assuming a cost-driven approach. Optimal alkaline H2O2 pretreatment conditions were found as a reaction temperature of 50 °C, 7% initial solid content, 1% H2O2 concentration, and a reaction time of six h. Under these conditions, the biochemical methane potential (BMP) test yielded as 309 mLCH4/gVS. The enhancement of methane production was calculated as 77.6% compared to raw greenhouse crop wastes.

Keywords