Remote Sensing (May 2025)
Evolution of Rockfall Based on Structure from Motion Reconstruction of Street View Imagery and Unmanned Aerial Vehicle Data: Case Study from Koto Panjang, Indonesia
Abstract
This study explores the growing application of 3D remote sensing in geohazard studies, particularly for rock slope monitoring. It highlights the use of cost-effective Street View Imagery (SVI) and Unmanned Aerial Vehicles (UAV) through Structure-from-Motion (SfM) photogrammetry as tools for 3D rockfall monitoring. Using multi-temporal SVI and UAV Imagery from the Koto Panjang cliff in Indonesia, we quantify rockfall volume changes over seven years and assess associated geohazards. The results reveal a total rockfall retreat of 5270 m3, with an average annual rate of 7.53 m3/year. Structural analysis identified six major discontinuity sets and confirmed inherent instability within the rock mass. Kinematic simulations using SVI and UAV-derived data further assessed rockfall trajectories and potential impact zones. Results indicate that 40% of simulated rockfall deposits accumulated near existing roads, with significant differences in distribution based on scree slope angles. This emphasizes the role of scree slope in influencing rockfall propagation. In conclusion, SVI and UAV imagery presents a valuable tool for 3D point cloud reconstruction and rockfall hazard assessment, particularly in areas lacking historical data. The study showcases the effectiveness of using SVI and UAV imagery in quantifying historical past rockfall volume and identifies critical areas for mitigation strategies, highlighting the importance of scree slope angle in managing rockfall hazard.
Keywords