Tunable Light Field Modulations with Chip- and Fiber-Compatible Monolithic Dielectric Metasurfaces
Bobo Du,
Yunfan Xu,
Huimin Ding,
Weitao Jiang,
Lei Zhang,
Yanpeng Zhang
Affiliations
Bobo Du
Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Yunfan Xu
Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Huimin Ding
Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Weitao Jiang
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Lei Zhang
Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Yanpeng Zhang
Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Metasurfaces with a high engineering degree of freedom are promising building blocks for applications in metalenses, beam deflectors, metaholograms, sensing, and many others. Though the fundamental and technological challenges, proposing tunable metasurfaces is still possible. Previous efforts in this field are mainly taken on designing sophisticated structures with active materials introduced. Here, we present a generic kind of monolithic dielectric metasurfaces for tunable light field modulations. Changes in the period number and surrounding refractive index enable discrete and continuous modulations of spatial light fields, respectively. We exemplify this concept in monolithic Lithium Niobate metasurfaces for tunable metalenses and beam deflectors. The utilization of monolithic dielectric materials facilitates the ready integration of the metasurfaces with both chip and optical fiber platforms. This concept is not limited by the availability of active materials or expensive and time-consuming fabrication techniques, which can be applied to any transparent dielectric materials and various optical platforms.